Neue Normung im Holzbau- Die neue DIN 1052:2004

Prof. Dr.- Ing. Wolfgang Rug, FH Eberswalde; (www.holzbau-statik.de)

1. Einleitung

Die neue DIN 1052 entstand in Anlehnung an den EC 5 und gilt solange als deutsche Holzbaunorm bis der EC 5 bauaufsichtlich eingeführt wird.

Die Bemessung nach der neuen DIN 1052 beruht im Gegensatz zur Bemessung nach der DIN 1052 (Ausgabe 04/1988/1996) auf dem Sicherheitskonzept nach der Methode der Grenzzustände

Damit wurde das bisher der DIN 1052 zugrundeliegende Sicherheitskonzept der zulässigen Spannungen verlassen. Kern dieses bewährten Sicherheitskonzeptes war die Festlegung von zulässigen Festigkeits- und Tragfähigkeitswerten, die beim Nachweis der Tragfähigkeit nicht überschritten werden durften. Auch für die Gebrauchstauglichkeit wurden zulässige Grenzwerte festgelegt. Die zulässigen Festigkeitskennwerte ermittelte man aus einem mittleren Wert der Bruchfestigkeit dividiert durch einen globalen Sicherheitsfaktor, der sowohl die Unsicherheit auf der Last- als auch auf der Widerstandsseite abdeckte. Ein für die Praxis einfaches Verfahren, das aber einer differenzierten Sicherheitsbetrachtung verschlossen bleibt, weil der summarische Sicherheitsfaktor in der Vergangenheit häufig in Ermangelung ausreichender wissenschaftlicher Grundlagen auf der Basis von Erfahrungswerten festgelegt wurde.

Von dieser bisherigen Praxis unterscheidet sich die mit den EC-Bemessungsnormen eingeführte Bemessung nach Grenzzuständen dadurch, dass nunmehr definierte Sicherheitsbeiwerte für die Einwirkungen (γ_F) und für die Baustofffestigkeiten bzw. Tragfähigkeiten (γ_M) eingeführt werden. Damit ist es möglich, den Beanspruchungsund Nutzungszustand rechnerisch genauer und unter Anwendung statistischer Verfahren begründeter zu erfassen.

Der Vorteil des neuen Sicherheitskonzeptes liegt eindeutig in einer genaueren Differenzierung bzw. wirklichkeitsnäheren Betrachtung des Sicherheitsniveaus durch Verwendung von Teilsicherheits- und Modifikationsbeiwerten. Damit verbunden ist aber ein höherer Rechenaufwand, welcher durch die Einführung entsprechender Computerprogramme wieder ausgeglichen werden kann.

2. Nachweis der Tragfähigkeit / Standsicherheit

Die Standsicherheit einer Konstruktion wird durch den Grenzzustand der Tragfähigkeit nachgewiesen.

Grenzzustände der Tragfähigkeit sind sicherheitsrelevante Bauzustände. Sie definieren Zustände, die im Zusammenhang mit dem Einsturz oder mit bestimmten Zuständen vor Eintritt eines Tragfähigkeitsversagens oder mit anderen Formen des Tragwerksversagens stehen. Im Sinne der Methode der extremen Eingangswerte werden als extreme Größen die Bemessungswerte der Beanspruchungen und die Bemessungswerte der Beanspruchbarkeiten eingeführt. Das prinzipielle Vorgehen beim rechnerischen Nachweis zeigt Bild 1.

Auf die Ermittlung der Bemessungswerte der Beanspruchung soll an dieser Stelle nicht weiter eingegangen werden (siehe hierzu Ausführungen und Beispiele in [2] bis [4]). Nachfolgend erfolgt eine kurzgefasste Darstellung der Ermittlung der Bemessungswerte der Beanspruchbarkeit.

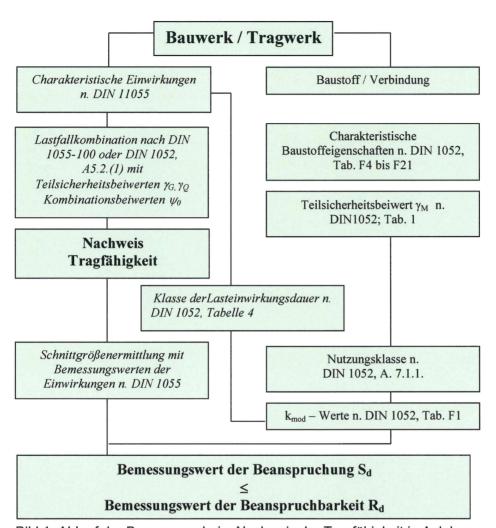


Bild 1: Ablauf der Bemessung beim Nachweis der Tragfähigkeit in Anlehnung an [1]

3. Bemessungswert einer Festigkeitseigenschaft X_d

Den Bemessungswert der Festigkeitseigenschaft X_d erhält man aus:

$$X_d = \frac{X_k}{\gamma_M} \cdot k_{\text{mod}}$$
 [DIN 1052, Abschn. 5.3 GL (3)]

mit

 X_{k} = charakteristischer Wert der Festigkeitseigenschaft (z. B. Festigkeit eines Baustoffes oder Tragfähigkeit eines Verbindungsmittels bzw. einer Verbindung γ_{M} = Teilsicherheitsbeiwert für die Festigkeitseigenschaft

 $k_{\rm mod}$ = Modifikationsbeiwert zur Berücksichtigung des Einflusses der Nutzungsklasse und der Lasteinwirkungsdauer auf Festigkeitseigenschaft.

Für die ständige und vorübergehende Bemessungssituation enthält die Norm gleiche Teilsicherheitsbeiwerte γ_M (s. Tabelle 1). Für die außergewöhnliche

Bemessungssituation ist γ_M = 1,0. Beim Nachweis der Stahlteile gelten die Teilsicherheitsbeiwerte der DIN 18800-1.

Tabelle 1: Teilsicherheitsbeiwerte γ_M für Festigkeitseigenschaften für die Bildung der Bemessungswerte in ständigen und vorübergehenden Bemessungssituationen nach DIN 1052:2004, Abschnitt 5.4, Tab. 1

Grenzzustand	Grenzzustand der Tragfähig- keit
Baustoff	ständige und vorübergehende Bemessungssituation
Holz und Holzwerkstoffe	1,3
Stahl in Verbindungen • auf Biegung beanspruchte stiftförmige Verbindungsmittel	1,1
 auf Zug oder Scheren beanspruchte Teile beim Nachweis gegen die Streckgrenze im Nettoquer- schnitt 	1,25
Plattennachweis auf Tragfähigkeit für Nagelplatten	1,25

Charakteristische Werte für die Baustoffeigenschaften:

Charakteristische Werte sind Quantilwerte aus statistischen Verteilungen. Sie werden in den Normen geregelt oder sind in bestimmten Fällen mit der Bauaufsicht abzustimmen.

Die charakteristischen Werte der Baustoffeigenschaften sind 5%- Quantilwerte aus normierten Versuchen.

Die genormten charakteristischen Baustoffkennwerte für Vollholz, Brettschichtholz, Sperrholz, Spanplatten (kunstharzgebundene und zementgebundene), OSB – Platten, Faserplatten und Gipskartonplatten sind mit den Begleitvorschriften (wie z. B. Holzartenverwendung, Sortierung, Querschnittsaufbau, materialabhängige Verwendung) im Anhang F zur DIN 1052:2004 geregelt.

Für andere nicht enthaltene Baustoffe bedarf es einer bauaufsichtlichen Zulassung. Sie können nur über eine Europäische technische Zulassung in Verkehr gebracht werden.

Die charakteristischen Festigkeitseigenschaften von Vollholz und Brettschichtholz sind nach Festigkeitsklassen gruppiert. Ihre Zuordnung zu den einzelnen Klassen erfolgt nach der Herkunft des Holzes sowie der Sortiermethode (visuell oder maschinell sortiert) und bei Brettschichtholz auch nach dem Querschnittsaufbau (homogenes Brettschichtholz = Alle Brettlagen entsprechen einer Festigkeitsklasse; kombiniertes Brettschichtholz = die äußeren Brettlagen im Bereich 1/6 der Trägerhöhe an beiden Seiten und die inneren Brettlagen entsprechen unterschiedlichen Festigkeitsklassen).

Die Anforderungen an die Holzwerkstoffe mit den in der DIN 1052, Anhang F ausgewiesenen Festigkeitseigenschaften sind in europäischen Begleitnormen geregelt. Die Anwendung bestimmter Holzwerkstoff-Plattentypen ist von den Nutzungsbedingungen abhängig. Unter den Bedingungen der Nutzungsklasse 3 darf nur Furniersperrholz oder die zementgebundene Spanplatte eingesetzt werden.

Die Anforderungen an Balken-, Furnierschichtholz und Brettsperrholz sind in bauaufsichtlichen Zulassungen geregelt.

Modifikationsbeiwert k_{mod}:

Der **Modifikationsbeiwert k**_{mod} berücksichtigt den Einfluss der Nutzungsklasse und den Einfluss des Lasteinwirkungsdauer (KLED) auf die Baustoffeigenschaften.

Nutzungsklassen:

Holzbaustoffe haben die Eigenschaften, Feuchte aus der sie umgebenden Umwelt aufzunehmen oder auch abzugeben. Je nach Klimaverhältnissen und Einbauzustand stellt sich ein hygroskopisches Gleichgewicht ein. Die sich einstellende Holzfeuchte beeinflusst jedoch die technischen Eigenschaften des Holzes (zum Beispiel nimmt die Festigkeit, der Elastizitätsmodul oder auch die Tragfähigkeit einer Holzbauverbindung mit zunehmender Holzfeuchte ab).

Deshalb müssen für Holzbauwerke **Nutzungsklassen** definiert werden, die die klimatischen Verhältnisse der Umgebung des Bauwerkes während seiner Lebensdauer kennzeichnen. Sie sind hauptsächlich zur Modifikation von Festigkeitsund Tragfähigkeitswerten und zur Berechnung von Verformungen unter festgelegten Umweltbedingungen notwendig. In Tabelle 2 (s. auch DIN 1052:2004, Abschn. 7.1.1) werden drei Nutzungsklassen festgelegt, die mit der Klassifizierung der alten Norm übereinstimmen.

Tabelle 2: Nutzungsklassen zur Berücksichtigung des Einflusses der klimatischen

Verhältnisse auf die Baustoffeigenschaften (s. DIN 1052:2004, Abschn. 7.1.1)

Nutzungs- klasse	Gleich- gewichts- feuchte u des Holzes ¹⁾ (Wert ²⁾)	Umgebungsklima	Beispiel
1	u ≤ 12% (515 %)	20°C und 65% rel. Luftfeuchte, die nur für einige Wochen pro Jahr überschritten wird	
2	u ≤ 20% (1020 %)	20°C und 85% rel. Luftfeuchte, die nur für einige Wochen pro Jahr überschritten wird	
3	u > 20% (1224 %)	Klimabedingungen, die zu höheren Holzfeuchten führen als in Nutzungsklasse 2	frei der Witterung ausgesetzte Bauteile

mittlere Gleichgewichtsfeuchte, die n. Tabelle 3 in Anlage F in den meisten Nadelhölzern nicht überschritten wird

Auch in der bisherigen DIN 1052 waren Abminderungswerte für die zulässigen Festigkeiten und Tragfähigkeiten festgelegt. Bei Nutzungsklasse 3 betrug der Abminderungsfaktor 0,83 (5/6).

Einfluss der Lastwirkungsdauer:

Für die Nachweise in den Grenzzuständen der Tragfähigkeit werden je nach Einwirkungsdauer 5 Klassen der Lasteinwirkungsdauer unterschieden (s. Tabelle 3). Dies steht im Zusammenhang mit den Eigenschaften des Baustoffes Holz. Die Festigkeit von Holz ist von der Einwirkungsdauer der Beanspruchung abhängig. In der noch gültigen DIN 1052:2004 ist im globalen Sicherheitsfaktor die Lastwirkungsdauer "ständig" berücksichtigt. Im Grenzlastfall HZ konnte man die

²⁾ für Holz und holzhaltige Werkstoffe enthält die Tabelle 3 in Anlage F Bereichsangaben – (von bis)-Werte

³⁾ in Ausnahmefällen auch Nutzungsklasse 3 möglich

zulässige Festigkeit oder Tragfähigkeit bei Lastzuständen mit einer sehr viel kürzeren Lastdauer um Faktoren zwischen 1,25 und 2,0 erhöhen.

In der DIN 1052:2004 werden in der Tabelle 4 die in der DIN 1055 genormten Einwirkungen den Klassen der Lastwirkungsdauer zugeordnet.

Klassen der Lasteinwirkungsdauer (KLED) nach DIN 1052: 2004, Abschnitt Tabelle 3: 712

1.1.2				
Klasse KLED	akkumulierte Dauer der charakteristischen Lasteinwirkung	Beispiele für Lastengemäß DIN 1052, Tab. 4		
ständig ²⁾	länger als 10 Jahre	Eigenlasten von Tragwerken, Ausrüstungen, festen Einbauten und haustechnischen Anlagen		
lang	6 Monate bis 10 Jahre	Nutzlasten in Lagerhäusern, Fabriken, Werkstätten		
mittel 1)	1 Woche bis 6 Monate	Verkehrslasten auf Decken, Schnee für Gebäude über NN > 1000 m		
kurz	kürzer als 1 Woche	Wind, Schnee für Gebäude über NN. ≤ 1000 m		
sehr kurz	kürzer als eine Minute	außergewöhnliche Einwirkungen wie Explosion, Anprall von Fahrzeugen		
Indirekte Einwirkungen aus Temperatur- und Feuchteänderungen sind der KLED "mittel" zuzuordnen. Indirekte Einwirkungen aus ungleichmäßigen Setzungen sind der KLED, ständig" zuzuordnen.				

Indirekte Einwirkungen aus ungleichmäßigen Setzungen sind der KLED "ständig" zuzuordnen

Modifikationsbeiwerte k_{mod}

Das Bild 2 zeigt die Modifikationsbeiwerte k_{mod} am Beispiel der in der DIN 1052:2004 Holzbaustoffe Vollholz, Brettschichtholz, Balkenschichtholz. geregelten Furnierschichtholz, Brettsperrholz und Baufurniersperrholz in Abhängigkeit von der Nutzungsklasse erwartenden Feuchtebeanspruchung) (d.h. zu Lastwirkungsdauer. Die Werte für die in der Praxis häufig vorkommenden Lastwirkungsdauer "mittel" wurden in der grafischen Darstellung besonders hervorgehoben.

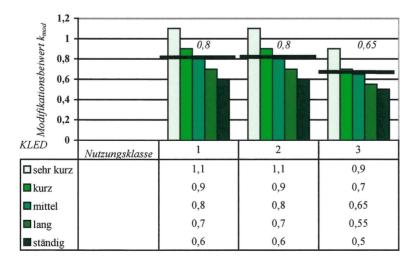


Bild 2: Modifikationsbeiwerte k_{mod} in Abhängigkeit von Nutzungsklasse und Klasse der Lasteinwirkungsdauer nach DIN 1052, Anlage F, Tabelle 1 für Vollholz, Brettschichtholz, Balkenschichtholz, Furnierschichtholz, Brettsperrholz und Baufurniersperrholz

Weitere Modifikationsbeiwerte k_{mod} sind Tabelle F1 der DIN 1052:2004 zu entnehmen.

4. Grenzzustand der Gebrauchstauglichkeit

Werden über die gesamte Nutzungszeit bestimmte Grenzwerte der Verformungen oder Schwingungen eingehalten, so ist die Gebrauchstauglichkeit gewährleistet. Dieser Nachweis ist stets ohne Berücksichtigung des Teilsicherheitsfaktors für die Einwirkungen (γ_F) und für die Baustoffeigenschaft (γ_M) zu führen (γ_F = 1,0; γ_M = 1,0). Es gilt die Gleichung: $E_d \leq C_d$, mit

E_d Bemessungswert der Einwirkungen

 C_d für die Bemessung maßgebender Nennwert, z. B. Grenzwert der Durchbiegung oder Wert der Grundschwingung bei Decken.

Den prinzipiellen Ablauf bei der Nachweisführung zeigt Bild 3.



Bild 3: prinzipieller Ablauf der Nachweisführung beim Nachweis auf Gebrauchstauglichkeit in Anlehnung an [1]

Kombination der Einwirkungen:

Es sind nach DIN 1055-100, Abschnitt 10.4 Gl. (22) und Gl. (24) die folgenden Kombinationen zu untersuchen:

1. charakteristische (seltene) Kombination

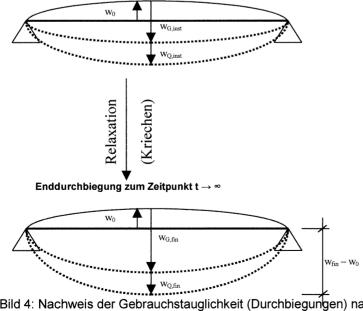
$$\sum G_{k,j} + Q_{k,1} + \sum_{i>1} \psi_{0,i} \cdot Q_{k,i}$$

2. quasi-ständige Kombination $\sum_{i \ge 1} G_{k,j} + \sum_{i \ge 1} \psi_{2,i} \cdot Q_{k,i}$

$$\sum G_{k,j} + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i}$$

Bei der charakteristischen (seltenen) Bemessungssituation werden alle extremen Nutzungsbedingungen mit bleibenden Auswirkungen auf das Tragwerk untersucht. Es werden die charakteristischen ständigen Einwirkungen zusammen mit der veränderlichen Einwirkung vorherrschenden und weiteren unabhängigen Einwirkungen mit den repräsentativen Werten $\psi_0 \cdot Q_k$ berücksichtigt.

quasi-ständige Kombination berücksichtiat dauernd die Nutzungsbedingungen eines Tragwerkes. Erfasst werden alle charakteristischen ständigen Einwirkungen und die dauerhaft wirkenden veränderlichen Einwirkungen mit ihren repräsentativen Werten $\psi_2 \cdot Q_k$.


Durchbiegungsgrenzwerte:

Der Nachweis der Einhaltung der Grenzwerte (s. Tabelle 4) ist nicht mehr zwingend vorgeschrieben. Der Tragwerksplaner kann ihn dort führen, wo er ihn für notwendig hält, was allerdings eine entsprechende Erfahrung voraussetzt.

Definiert werden nach Bild 4 drei Durchbiegungsanteile. Die Gesamtdurchbiegung setzt sich zusammen aus den Werten infolge ständiger und veränderlicher Einwirkung minus der geplanten Überhöhung:

Gesamt-Enddurchbiegung = w_{fin} - w₀

Anfangsdurchbiegung zum Zeitpunkt $t \rightarrow 0$

- Überhöhung
- w_{G,inst} Anfangsdurchbiegung infolge ständiger Last
- w_{Q,inst} Anfangsdurchbiegung infolge veränderlicher Last
- $w_{G, fin}$ Enddurchbiegung infolge ständiger Last
- w_{Q,fin} Enddurchbiegung infolge veränderlicher Last

Bild 4: Nachweis der Gebrauchstauglichkeit (Durchbiegungen) nach DIN 1052:2004, Abschn. 8.3 und 9.2

Tabelle 4: Grenzwerte der Durchbiegung (DIN 1052:2004, Abschn. 9.2)

Durchbiegung	Grenzwert ^{1),2)} Träger	Kragträger
Durchbiegung in der charakteristischen (seltenen) Bemessung	ssituation	L
elastische Anfangsdurchbiegung aus veränderlicher Einwirkung W _{Q,inst}	< 1/300	≤I _K /150
Enddurchbiegung "minus" elastische Anfangsdurchbiegung aus Eigenlast $\mathbf{w}_{\text{fin}} - \mathbf{w}_{\text{G,inst}}$		
$w_{fin} = \underbrace{w_{G,inst} \cdot (1 + k_{def}) + w_{Q,fin}}_{W_{G,fin}}$	≤1/200	≤I _K /100
$\begin{aligned} \mathbf{w}_{Q,fin} &= \mathbf{w}_{Q,1,inst} \cdot \left(1 + \psi_{2,1} \cdot \mathbf{k}_{def}\right)^{3} + \left[\sum_{i>1} \left(\mathbf{w}_{Q,i,inst} \cdot \left(\psi_{0,i} + \psi_{2,i} \cdot \mathbf{k}_{def} \right) \right)^{4} \right], \\ & (vgl. \ auch \ DIN \ 1052:2004, \ Abschn. \ 8.3, \ Gl. \ (6) \ bis \ Gl. \ (8)) \end{aligned}$		
Durchbiegung in der quasi-ständigen Bemessungssituation	T	1
Gesamtdurchbiegung "minus" Überhöhung $W_{fin} - W_0$ $w_{fin} = w_{G,inst} \cdot (1 + k_{def}) + w_{Q,i,fin}$ $W_{G,fin}$	≤ <i>V</i> /200	≤ I _K /100
$\mathbf{w}_{Q,i,fin} = \sum_{i>0} (\mathbf{w}_{2,i} \cdot \mathbf{w}_{Q,i,inst} \cdot (1 + \mathbf{k}_{def}))^{5},$ $(\mathbf{vgl.} \ auch \ DIN \ 1052:2004, \ Abschn. \ 8.3)$ $\mathbf{w}_{fin} - \text{Endverformung}$ $\mathbf{w}_{inst} - elastische Anfangsverformung, berechnet aus den Mittelwerten of the pack Nutzung des Tragwerkes können auch andere Anfarderungen$		

Je nach Nutzung des Tragwerkes können auch andere Anforderungen (größere oder kleinere Grenzwerte) vereinbart

vorherrschende veränderliche Einwirkung

⁴⁾[...] wenn weitere veränderliche Einwirkungen vorhanden; ⁵⁾ alle veränderliche Einwirkungen

Verformungsnachweis:

Die Enddurchbiegung eines Holzbauteiles wird unter Berücksichtigung des Kriechens nach DIN 1052, A. 8.3 Gl.(6) bis Gl. (9) berechnet.

berücksichtigt das Materialkriechen bei ständigen Lasteinwirkungen in Abhängigkeit von der Holzfeuchte und der Lastwirkungsdauer (DIN 1052:2004, Tabelle F 2).

Empfehlung, falls nicht besondere Bedingungen und Anforderungen zu beachten sind; für Fachwerkträger gültig für Durchbiegung des Gesamtsystems und Einzelstäbe zwischen den Knotenpunkten

3) vorherrschende veränderliche Einwirkung

Anders als in der DIN 1052 (alt) ist der Einfluss des lastabhängigen Kriechens für den Eigenlastanteil unabhängig von seinem Anteil an der Gesamtlast zu berücksichtigen.

Besteht ein Bauteil aus Einzelteilen mit unterschiedlichen Kriecheigenschaften (z. B. Träger aus Vollholz und Holzwerkstoffen), so darf mit dem arithmetischen Mittel gerechnet werden.

Werden Baustoffe mit unterschiedlichen Kriecheigenschaften (k_{def1} , k_{def2}) über Verbindungen gehalten, berechnet sich die Endverformung der Verbindung aus:

$$\mathbf{w}_{\text{fin}} = \mathbf{w}_{\text{inst}} \cdot \left[\frac{\left(1 + k_{\text{def1}}\right) \left(1 + k_{\text{def2}}\right)}{2} \right]$$

Schwingungen:

Schwingungen können die Funktionsfähigkeit eines Bauwerkes oder Bauteiles beeinflussen. Deshalb fordert z.B. der EC 5, Teil 1-1 den Nachweis, dass eine Beeinträchtigung der Funktionsfähigkeit durch Schwingungen nicht eintritt. Man unterscheidet

- 1. Decken-Schwingungen durch Maschinen und
- 2. Schwingungen von Wohnungsdecken.

Untersuchungen zum Schwingungsverhalten können durch Messung oder Berechnung durchgeführt werden. Zu berücksichtigen sind die erwartete Steifigkeit der Decke und der Dämpfungsgrad.

Schwingungen von Maschinen

Diese sind für die ungünstigste Beanspruchungskombination von ständiger und veränderlicher Last zu begrenzen.

Schwingungen von Wohnungsdecken

Als Frequenzkriterium unterscheidet der EC 5 zwei Fälle. Liegt die Eigenfrequenz der Decke unter 8 Hz, ist eine besondere Untersuchung notwendig, worauf in der Norm nicht weiter eingegangen wird. Decken mit einer Eigenfrequenz von größer 8 Hz müssen zwei Anforderungen erfüllen:

- Nachweis der Durchbiegung unter einer konzentrierten vertikalen Last F
- 2. Nachweis der Geschwindigkeitsreaktion.

Die Berechnung ist unter der Annahme einer Decke ohne Verkehrslasten zu führen. Während der erste Nachweis eine ausreichende Steifigkeit bei niederfrequenten Belastungen sichert, wird mit dem zweiten Nachweis eine ausreichende Masse gegenüber impulsartiger Belastung nachgewiesen. Da die Eigenfrequenzberechnung in Eurocode 5 auf Einfeldträger ausgerichtet ist, wird in [1] die Nachweisführung auf den Zweifeldträger ausgerichtet.

Die DIN 1052:2004 enthält hierzu keine differenzierten Festlegungen. Es ist allerdings festgelegt, dass, wenn kein genauerer Nachweis geführt wird, die Durchbiegung bei Decken in Wohngebäuden für

$$W_{G,inst} + \psi_2 \cdot W_{G,inst} \leq 6 mm$$

zu begrenzen ist (s. DIN 1052:2004, Abschnitt 9.3.(2)).

Damit wird eine Eigenfrequenz von mindestens 7,2 Hz sichergestellt.

Im Schwingungsfall verhalten sich auch Durchlaufträger ähnlich wie Einfeldträger. Die Formel für Einfeldträger ist daher näherungsweise auch für Mehrfeldsysteme

anwendbar, wenn die Feldweiten gleich sind. Die elastische Einspannung in den Nachbarfeldern darf dann bei der Berechnung der Durchbiegung berücksichtigt werden.

Unterliegen Holzbauteile einer vorwiegend ruhenden Belastung entsprechend DIN 1055-3, Abschnitt 3 darf der Schwingungsnachweis in der Regel entfallen.

3. Neue Regeln für die Berechnung von stiftförmigen Verbindungsmitteln

Ein konkurrenzfähiger Holzbau ist ohne leistungsfähige Verbindungen nicht denkbar. Beim Entwurf von Verbindungen kann der Konstrukteur auf eine Vielzahl von Verbindungsmitteln mit den unterschiedlichsten Eigenschaften zurückgreifen. Ein wesentliches Kennzeichen für eine hohe Leistungsfähigkeit von Verbindungsmitteln ist eine möglichst hohe Lastaufnahme bei geringer Verformung. Klebeverbindungen können hohe Beanspruchungen bei sehr geringen Verformungen aufnehmen. Sie werden deshalb auch als "starre" Verbindungen bezeichnet. Alle anderen Verbindungsmittel zählt man zu den " nachgiebigen" Verbindungsmitteln. Die DIN 1052:2004 enthält neue Regeln zu folgenden Verbindungen:

Verbindungen mit stiftförmigen metallischen Verbindungsmitteln Verbindungen mit sonstigen mechanischen Verbindungsmitteln Geklebte Verbindungen Zimmermannsmäßige Verbindungen

Bei Verbindungen mit **stiftförmigen Verbindungsmitteln** handelt es sich um Verbindungen mit Stabdübeln, Nägeln, Bolzen bzw. Gewindestangen, Holzschrauben und Klammern. Stiftförmige Verbindungsmittel können Beanspruchungen senkrecht zur Stiftachse (Beanspruchung auf Abscheren) und parallel zur Stiftachse (Beanspruchung auf Herausziehen) übertragen.

Das Tragverhalten stiftförmiger Verbindungsmittel bei Beanspruchung auf Abscheren wird im wesentlichen durch zwei Brucharten bestimmt, einmal durch den Bruch infolge Überschreitung der Biegefestigkeit des Verbindungsmittels und andererseits durch die Überschreitung der Lochleibungsfestigkeit der Holzwerkstoffe in den Verbindungen. Die Tragfähigkeit wird wesentlich von der Geometrie der Verbindungsmittel, der Festigkeit der Verbindungsmittel und der zu verbindenden Baustoffe beeinflusst.

Die rechnerischen Grundlagen für die Beanspruchung von stiftförmigen Verbindungsmitteln auf Abscheren wurden mit der DIN 1052:2004 vereinheitlicht. Die Vereinheitlichung basiert auf der Arbeit von Johansen aus dem Jahre 1949 [6]. In recht aufwendigen Formeln können nunmehr bei der Berechnung der Tragfähigkeit gleichzeitig mehrere einflussgebende Parameter, wie die Werkstofffestigkeit, Materialdicken, Rohdichte und das idealplastische Tragvermögen der Materialien berücksichtigt werden.

Als genaues Nachweisverfahren gelten gemäß Abschnitt 12.2.1 (2) die im Anhang G der Norm vollständig zusammengestellten Johansen- Formeln.

Für den praktischen Gebrauch hat man vereinfachte Formeln im Abschnitt 12.2. zusammengestellt, um dem Praktiker die Berechnung von Verbindungsmitteln bei Beanspruchung auf Abscheren zu erleichtern.

Nachfolgend werden die ausgewählte Grundlagen zur Berechnung von stiftförmigen Verbindungsmitteln bei Beanspruchung auf Abscheren zusammengestellt. Auf die besonderen Regeln der Norm für die einzelnen Verbindungsmittel, wie Stabdübel.

Bolzen, Nägel, Klammern wird an dieser Stelle nicht eingegangen. Zu Beispielrechnungen und einem umfassenden Überblick wird die Literatur [2] bis [6] empfohlen.

Verbindungen von Bauteilen aus Holz und/ oder Holzwerkstoffen:

Die klassischen Holzbauverbindungen werden aus zwei oder mehreren Hölzern hergestellt. Aus praktischen Gründen bestehen dabei die Hölzer i. A. aus einer Holzart und gleicher Festigkeitsklasse. Mit den neuen Berechnungsgrundlagen der DIN 1052:2004 lassen sich aber auch Verbindungen aus Holz unterschiedlicher Holzarten und Festigkeitsklassen oder aus Holz und Holzwerkstoffen berechnen.

Stahlblech- Holz- Verbindungen:

Die Leistungsfähigkeit einer Holzbauverbindung kann in Kombination mit Stahlblechen wesentlich erhöht werden. So erhöhen außenliegende Stahlbleche die Tragfähigkeit durch örtliche Verstärkung im Kopfbereich und mit eingeschlitzten Stahlblechen kann gezielt eine tragfähigkeitserhöhende Mehrschnittigkeit hergestellt werden. Die Norm unterscheidet bei stiftförmigen Verbindungen zwei Arten von Stahlblech- Holz- Verbindungen:

- Verbindungen mit innenliegenden Stahlblechen und mit außenliegenden dicken Blechen
- Verbindungen mit außenliegenden dünnen Blechen

Die Kriterien für " dicke" bzw. "dünne" Stahlbleche können Tabelle 8 entnommen werden.

4. Tragfähigkeit stiftförmiger Verbindungsmittel- Beanspruchung auf Abscheren

Die DIN 1052 bietet bei Beanspruchung auf Abscheren zwei Möglichkeiten für die Berechnung von stiftförmigen Verbindungsmitteln:

Die Berechnung nach dem genauen Verfahren entsprechend den Formeln im Anhang G der Norm.

Die Berechnung nach dem Näherungsverfahren in Abschnitt 12.2. der Norm.

Genaues Nachweisverfahren:

Die von Johansen entwickelten Formeln berücksichtigen alle möglichen Versagensfälle bei Verbindungen mit stiftförmiger Verbindungsmitteln, bestehend aus Holzwerkstoffen (s. Tabelle 5+ 6) und in Kombination mit Stahl (s. Tabelle 8). Die genauere Berechnung der charakteristischen Werte der Tragfähigkeit R_k erfolgt nach den in Anhang G der DIN 1052:2004 zusammengestellten Rechenregeln. Für die Ermittlung der Bemessungswerte der Tragfähigkeit R_d enthalten die Tabellen auch Angaben für den jeweils geltenden Materialfaktor.

Die Berechnung von R_k muss für alle dort aufgeführten Versagensfälle durchgeführt werden und der kleinste rechnerische Wert ist maßgebend (siehe Tabelle 5 und 6- weitere Tabellen siehe DIN 1052:2004, Anhang G).

Berechnungsgleichung für den charakteristischen Wert R_k	Glei- chung	Versagensfall
$R_k = f_{h,1,k} \cdot t_1 \cdot d$ $\gamma_M = 1,3$	(G.1)	t_2t_1
$R_k = f_{h,1,k} \cdot t_2 \cdot d \cdot \beta$ $\gamma_M = 1,3$	(G.2)	to the contract of the contrac
$R_{k} = \frac{f_{h,1,k} \cdot t_{1} \cdot d}{1 + \beta} \left\{ \sqrt{\beta + 2\beta^{2} \left[1 + \frac{t_{2}}{t_{1}} + \left(\frac{t_{2}}{t_{1}}\right)^{2} \right]} + \beta^{3} \cdot \left(\frac{t_{2}}{t_{1}}\right)^{2} - \beta \cdot \left(1 + \frac{t_{2}}{t_{1}}\right)^{2} \right\}$ $\gamma_{M} = 1,3$	(G.3)	to the state of th
$R_{k} = \frac{f_{h,l,k} \cdot t_{1} \cdot d}{2 + \beta} \left[\sqrt{2 \cdot \beta \cdot (1 + \beta) + \frac{4 \cdot \beta \cdot (2 + \beta) \cdot M_{y,k}}{f_{h,l,k} \cdot d \cdot t_{1}^{2}}} - \beta \right]$ $\gamma_{M} = 1,2$	(G.4)	p t
$R_{k} = \frac{f_{h,1,k} \cdot t_{2} \cdot d}{1 + 2\beta} \left[\sqrt{2 \cdot \beta^{2} \cdot (1 + \beta) + \frac{4 \cdot \beta \cdot (1 + 2\beta) \cdot M_{y,k}}{f_{h,1,k} \cdot d \cdot t_{2}^{2}}} - \beta \right]$ $\gamma_{M} = 1,2$	(G.5)	pH t2 t1
$R_{k} = \sqrt{\frac{2 \cdot \beta}{1 + \beta}} \sqrt{2 \cdot M_{y,k} \cdot f_{h,1,k} \cdot d}$ $\gamma_{M} = 1,1$ Tabello 5: Charakteristische Worte R. einer einschnittigen Verbindur	(G.6)	Нq

Tabelle 5: Charakteristische Werte R_K einer einschnittigen Verbindung pro Scherfuge von Bauteilen aus Holz bzw. Holzwerkstoffen (Tabelle G.2 in DIN 1052:2004)

Berechnungsgleichung für den charakteristischen Wert R_k	Glei- chung	Versagensart
$R_k = f_{h,1,k} \cdot t_1 \cdot d$ $\gamma_{M} = 1,3$	(G.13)	t, t
$R_{k} = f_{h,1,k} \cdot t_{1} \cdot d \left[\sqrt{2 + \frac{4 \cdot M_{y,k}}{f_{h,1,k} \cdot d \cdot t_{1}^{2}}} - 1 \right]$ $\gamma_{M} = 1,2$	(G.14)	t, t
$R_{k} = \sqrt{2 \cdot \sqrt{2 \cdot M_{y,k} \cdot f_{h,1,k} \cdot d}}$ $\gamma_{M} = 1,1$	(G.15)	t, t

Tabelle 6: - Charakteristische Werte R_k für einschnittige Stahlblech-Holz-Verbindungen für, Blechdicke t ≥ 0,5*d- dicke Bleche aussenliegend (Tabelle G.5 in DIN 1052:2004)

Die Berechnungen sind sehr zeitaufwendig und kaum noch kostengünstig per Hand durchführbar. Um diesem Manko entgegenzuwirken, wurde eine Berechnungssoftware entwickelt die den Aufwand zur Berechnung der Tragfähigkeit stiftförmiger Verbindungsmittel nach DIN1052:2004 minimieren soll (s.www.holzbausoftware.com).

Näherungsverfahren:

Die Tragfähigkeit kann näherungsweise nach Gleichung GI. (G 6) in Tabelle 5 erfolgen. Dieser Versagensfall stellt sich ein, wenn zwei plastische Gelenke im Verbindungsmittel entstehen. Möglich ist das aber nur, wenn ganz bestimmte geometrische Verhältnisse vorliegen, d. h. die Formel ist nur gültig, wenn in Abhängigkeit von der Art des Verbindungsmittels und dem Holzwerkstoff, seiner Festigkeit ganz bestimmte Mindestholzdicken vorliegen.

Verbindungen von Bauteilen aus Holz und/ oder Holzwerkstoffen:

Bei Einhaltung der Mindestholzdicken t_{1,req} und t_{2,req} nach GL. (192) bis (194) in DIN 1052:2004, (siehe auch Tabelle 7) erfolgt die Berechnung des charakteristischen Wertes der Tragfähigkeit pro Scherfuge und Verbindungsmittel nach GL. (191)

$$R_k = \sqrt{\frac{2 \cdot \beta}{1 + \beta}} \sqrt{2 \cdot M_{y,k} \cdot f_{h,1,k} \cdot d} ; \qquad \text{mit } \beta = f_{h,2,k} / f_{h,1,k}$$

Bei geringeren Holzdicken, ist der Wert R_K mit dem jeweils kleinerem Wert von $t_1/t_{1,req}$ und $t_1/t_{2,req}$ zu korrigieren. Die Formeln für $t_{1,req}/t_{2,req}$ können Tabelle 7 entnommen werden.

Der Bemessungswert der Tragfähigkeit pro Scherfuge und Verbindungsmittel wird nach GL. (195) berechnet:

$$R_d = \frac{k_{\rm mod} \cdot R_k}{\gamma_M}$$
; mit $\gamma_{\rm M}$ = 1,1 = Wert für auf Biegung beanspruchten Stahl

Ist zum Beispiel aufgrund unterschiedlicher Materialverwendung k_{mod} unterschiedlich groß, dann ist k_{mod} nach GL. (196) zu bilden:

$$k_{\text{mod}} = \sqrt{k_{\text{mod},1} \cdot k_{\text{mod},2}}$$

Tabelle 7: Berechnung der Mindestholzdicken für Holz/Holzwerkstoffverbindungen bei Anwendung des Näherungsverfahrens nach DIN 1052, Abschnitt 12.2.2 einschnittige Verbindung zweischnittige Verbindung $t_1 + t_2$ $t_1 + t_2$ GI [193] GI [194] Symbole Holz- oder Holzwerkstoffdicke oder Eindringtiefe der Verbindungsmittel in [mm] t_{1},t_{2} charakteristischer Wert der Lochleibungsfestigkeit im Holz 1 bzw. Holz 2 in [N/mm²] $f_{h,1,k}$; $f_{h,2,k}$ β= f_{h,2,k} / f_{h,1,k} Durchmesser des Verbindungsmittels in [mm] d charakteristischer Wert des Fließmoments des Verbindungsmittels in [Nmm] M_{v.}

Stahlblech- Holz- Verbindungen:

Bei Einhaltung der Mindestholzdicke t_{req} errechnet sich der charakteristische Wert der Tragfähigkeit pro Scherfuge und Verbindungsmittel nach den Formeln GL. (197) und (199) gemäß Tabelle 8.

Die Bemessung der Tragfähigkeit pro Scherfuge und Verbindungsmittel wird wieder nach GL. (195), ermittelt.

Tabelle 8: Näherungsverfahren zur Berechnung des charakteristischen Wertes der Tragfähigkeit Rk von Stahl/ Holz- Verbindungen pro Scherfuge und Verbindungsmittel nach DIN 1052, Abschnitt 12.2.3 Lage der Bleche innen außen - dickes Blech außen - dünnes Blech Bedingungen für "dicke" Stahlbleche: $t \ge d$ sowie Stahlbleche $t \ge 2mm$, die mit Bedingungen für "dünne" Stahlbleche: Sondernägeln der Tragfähigkeits-klasse 3 mit einem Durchmesser d ≤ 2t $t \le 0.5* d$ angeschlossen sind R_k GI [199] GI [197] $R_k = \sqrt{2} \cdot \sqrt{2 \cdot M_{vk} \cdot f_{h1k} \cdot d}$ $R_k = \sqrt{2 \cdot M_{vk} \cdot f_{h2k} \cdot d}$ t_{req} Mittelholz zweischnittig mehrschnittig GI [198] GI [200] GI [201] $t_{req} = 1,15 \cdot 4 \cdot \sqrt{\frac{M_{y,k}}{f_{h,k} \cdot d}}$ $t_{req} = 1,15 \cdot (2 \cdot \sqrt{2}) \cdot \sqrt{\frac{M_{y,k}}{f_{h,k} \cdot d}}$ $t_{req} = 1,15 \cdot (2 + \sqrt{2}) \cdot \sqrt{\frac{M_{y,k}}{f}}$ nach DIN 1052 Symbole Mindestholzdicken in [mm] t_{req} charakteristischer Wert der Lochleibungsfestigkeit des Holzes in [N/mm²] charakteristischer Wert der Tragfähigkeit pro Scherfuge in [N] R_k d Durchmesser des Verbindungsmittels in [mm] $M_{v,k}$ charakteristischer Wert des Fließmoments des Verbindungsmittels in [Nmm]

5. Tragfähigkeit stiftförmiger Verbindungsmittel- Beanspruchung auf Herausziehen

DIN 1052:2004 enthält in Abschnitt 12.8 Regeln für die Berechnung der Tragfähigkeit auf Herausziehen für Nägel, Holzschrauben und Klammern.

Maßgebend für die Beanspruchung in Schaftrichtung sind zwei Größen, der Widerstand gegen Herausziehen und der Widerstand gegen Kopfdurchziehen. Die jeweiligen charakteristischen Werte gehen in die Berechnung ein. Die wesentlichen Grundlagen der Bemessung werden anhand der Schrauben dargelegt.

Schrauben:

Holzschrauben mit Gewinde nach DIN 7998 werden nach DIN 1052 in die Tragfähigkeitsklasse 2A eingestuft.

Die entsprechenden charakteristischen Werte für die Auszieh- und Kopfdurchziehparameter von Schrauben enthält Tabelle 9. Analog bei Nägeln gelten beim Anschrauben von Holzwerkstoffplatten bestimmte Mindestplattendicken, die zu beachten sind.

Ansonsten gelten für die Mindestabstände, Mindestholzdicken und Mindesteinschraubtiefen die gleichen Regeln, wie für auf Abscheren beanspruchte Holzschrauben, d. h. konkret es gelten die Mindestabstände wie für Vorgebohrte Nägel nach Tabelle 10 der Norm.

Tabelle 9: Berechnung des charakteristischen Widerstandes gegen Herausziehen ($R_{ax,k}$) und des Bemessungswertes ($R_{ax,d}$) (Ausziehwiderstand) von Holzschrauben nach DIN 1052, Abschnitt 12.8.2

Abschnitt 12.8.2	2					
	$R_{ax,k}$					
45° ≤ α ≤ 90°			Holzschrauben	nach DIN 7998		
GL [235]			GL [235]		
$R_{ax,k} = \min \begin{cases} \frac{f_{1,k} \cdot d \cdot \ell_{ef}}{\sin^2 \alpha + \frac{3}{4} \cos^2 \alpha} \\ f_{2,k} \cdot d_k^2 \end{cases}$		$R_{ax,k} = \min \begin{cases} -\frac{1}{\sin x} \\ f_2 \end{cases}$	$\frac{f_{1,k} \cdot d \cdot \ell_{ef}}{\ln^2 \alpha + \frac{3}{4} \cos^2 \alpha}$ $\frac{1}{4} \cos^2 \alpha$			
				eristische Tragfähigkeit des res anzunehmen mit		
Ra	_{x.d} nach	Gl. (234)	R _{ax,d} nach	n Gl. (236)		
$R_{ax,d} = \frac{k_{mod} \cdot R_{ax,k}}{\gamma_M} mit \gamma_M = 1,1$		$R_{ax,d} = \frac{R_{ax,k}}{\gamma_M}$				
charakte	ristisch	e Werte für des	charakteristisch	ne Werte für des		
Ausz	ziehpar	ameters f _{1,k}	Kopfdurchzieh	parameters f _{2,k}		
Tragfähigke klasse:	eits-	f _{1,k}	Tragfähigkeits- klasse:	$f_{2,k}$		
1		60·10 ⁻⁶ ·ρ _k ²	Α	$60.10^{-6} \cdot \rho_{k}^{2}$		
2		$70.10^{-6} \cdot \rho_k^2$	B C	$80.10^{-6} \cdot \rho_k^2$		
3		$\frac{60 \cdot 10^{-6} \cdot \rho_k^2}{70 \cdot 10^{-6} \cdot \rho_k^2}$ $80 \cdot 10^{-6} \cdot \rho_k^2$	С	$\frac{60 \cdot 10^{-6} \cdot \rho_{k}^{2}}{80 \cdot 10^{-6} \cdot \rho_{k}^{2}}$ $100 \cdot 10^{-6} \cdot \rho_{k}^{2}$		
Charakteristische Rohdichte ρ _k in kg/m³, jedoch höchstens 500 kg/m³						
Symbole			h DIN 1052 A. 12.8.2	V		
f _{1,k} ch	charakteristische Werte für des Ausziehparameters in [N/mm²]					
	charakteristische Werte für des Kopfdurchziehparameters in [N/mm²]					
	Nenndurchmesser der Schraube in [mm]					
	Kopfdurchmesser der Schraube in [mm]					
ℓ _{ef} wi	ℓ _{ef} wirksame Eindringtiefe der Schraube in [mm]					

6. Tragfähigkeit von Nägeln, Schrauben und Klammern unter kombinierter Beanspruchung (Abscheren und Herausziehen):

Werden Nägel, Holzschrauben und Klammern sowohl senkrecht, als auch parallel zu Ihrer Stiftachse beansprucht muss folgende GL. (237) eingehalten sein:

$$\left(\frac{F_{_{ax,d}}}{R_{_{ax,d}}}\right)^{\!\!\!\!\!m} + \left(\frac{F_{_{la,d}}}{R_{_{la,d}}}\right)^{\!\!\!\!\!m} \leq 1$$

mit

m = 1glattschaftige Nägel, Sondernägel der Tragfähigkeitsklasse 1, Klammern m = 2 Sondernägel der Tragfähigkeitsklasse 2 und Holzschrauben

7. Berechnung der sonstigen mechanischen Verbindungsmittel

Zu den Verbindungen mit sonstigen mechanischen Verbindungsmitteln zählt die DIN 1052:2004 in Abschnitt 13 Nagelplatten, Dübel besonderer Bauart und Stahlblechformteile mit mechanischen Verbindungsmitteln. Nachfolgend wird nur auf die **Verbindungen mit Dübeln besonderer Bauart** eingegangen. Für die Dübel besonderer Bauart wird jetzt nicht mehr wie bisher die Tragfähigkeit in Tabellen angegeben, sondern diese kann jetzt berechnet werden.

8. Dübel besonderer Bauart

Art, Geometrie und Anforderungen an die Werkstoffeigenschaften sind europaweit in DIN EN 912 genormt. Die in Deutschland gebräuchlichsten Dübel werden entsprechend ihren Anforderungen in Abschnitt G4 der DIN 1052:2004 angegeben. Der Kübler- Dübel und der Dübel, Typ Siemens- Bauunion sind jedoch nun nicht mehr in der Norm enthalten. Die Berechnung der Dübeltragfähigkeit erfolgt nach Abschnitt 13.3 der DIN 1052:2004.

Es kann von den Regeln der Norm abgewichen werden, wenn eine bauaufsichtliche Zulassung oder eine Zustimmung im Einzelfall vorliegt. Dübel besonderer Bauart werden in zwei Gruppen eingeteilt:

- Verbindungen mit Ring- und Scheibendübeln
- Verbindungen mit Scheibendübel mit Zähnen oder Dornen.

Sie übertragen ihre Kräfte vor allem über Lochleibungsbeanspruchung und Scherbeanspruchung. Dabei entstehen Versatzmomente. Mit Ihnen können Verbindungen aus Vollholz, Brettschichtholz, Balkenschichtholz und Furnierschichtholz (ohne Querlagen und mit ρ_k < 500 Kg/m³) hergestellt werden. Für Verbindungen mit Laubhölzern sind nur der Ringdübel, Typ A1 und der Scheibendübel, Typ B1 geeignet.

Jeder Dübel ist wegen der auftretenden Versatzmomente durch einen Bolzen zu sichern. Hier sind unbedingt, die in Tabelle 19 der Norm zu den Dübeltypen festgelegten Dübeldurchmesser einzuhalten. Werden mehr als zwei Dübel mit einem Durchmesser oder Seitenlänge von > 130mm hintereinander angeordnet, dann sind auch an den Enden der Laschen zusätzliche Bolzen zur Lagesicherung der Verbindung anzuordnen (s. Bild 49 in der Norm). Die Bolzen sind so anzuziehen, dass die Unterlegscheiben vollflächig anliegen.

Ist mit Schwindverformungen zu rechnen sind die Bolzen wiederholt nachzuziehen. Die Bolzen müssen hierfür eine genügend lange Gewindelänge haben. Auf ein Nachziehen kann nur dann verzichtet werden, wenn beim Einbau die Holzfeuchte der zu verbindenden Holzbauteile nicht mehr als 5% über der zu erwarteten mittleren Gleichgewichtsholzfeuchte liegt.

Bolzen dürfen bei Ring- oder Scheibendübeln mit Zähnen bzw. Dornen durch entsprechende Gewindestangen oder Holzschrauben ersetzt werden. Ein Ersatz der Bolzen durch Sondernägel oder Holzschrauben ist bei Ringdübeln mit $d_c < 95$ mm und bei Scheibendübeln mit $d_c < 117$ mm möglich. Die DIN 1052:2004 definiert die Tragkraft der Dübel für sogenannte Verbindungseinheiten, die i. A. aus einem Dübel mit entsprechendem Bolzen bestehen.

Verbindungen mit Ring- und Scheibendübeln ohne Zähne:

Ring- und Scheibendübel ohne Zähne werden in das Holz eingelassen. Hierfür sind vorher an der vorgesehenen Stelle mittels Fräswerkzeugen entsprechende

Aussparungen zu fräsen, die eine zur Dübelform passfähige Form ergeben. Ringund Scheibendübel gibt es für Holz/ Holz- Verbindungen und Holz/ Stahl-Verbindungen. Ring- und Scheibendübel können nach DIN 1052, A 13.3.2 für Verbindungen aus Vollholz, Brettschichtholz, Balkenschichtholz oder

		e für eine Verbindungseinheit nach DIN 1052, Abschr	T
	dingung	R _{c,k}	GL
	schen Kraft- und	$R_{c,0,k} = min \begin{cases} 35 \cdot d_c^{-1.5} \\ 31,5 \cdot d_c \cdot h_e \end{cases}$	50 === 1)
	errichtung	$R_{c,0,k} = min $ 315.d.h	[257] 1
($\alpha = 0^{\circ}$	$(31,3\cdot a_c\cdot n_e)$	
		$R_{c,0,k} = k_{a1} \cdot R_{c,0,k}$	
O	ı ≤ 30°	(125	[004]
	a _{1.t} ≥ 2•d _c	1,25	[261]
		$ mit k_{a1} = min \begin{cases} 1,25 \\ a_{1,t} / 2d_c \end{cases} $	
	ı ≤ 30°	$R_{c,0,k} = k_{a1} \cdot R_{c,0,k}$	
und	a _{1,t} ≤ 2•d _c	$mit k_{a1} = a_1/(2 \cdot d_c)$	
	e a _{1,t} < 1,5 d _c sind zulässig!)	$\prod_{a_1} \alpha_1 / (2 \alpha_c)$	
	hdichte	$R_{c,\alpha,k} = k_{\rho} \cdot R_{c,0,k}$	Absatz
		ρ_{ν}	1
$\rho_k \geq 0$	350 kg/m³	$mit k_{\rho} = \frac{\rho_k}{350}$	(7)
		$R_{c,lpha,k} = k_{_{ ho}} \cdot R_{c,0,k}$	
		(1.75	
Do	hdichte	$mit k_{\rho} = min \begin{cases} 1,75 \\ \rho_{k/350} \end{cases}$	
Rohdichte ρ _k > 350 kg/m³		$\rho_k/250$	[260]
Pk -	330 kg/iii	() 330	
		(ρ _k ist immer der kleinere Wert der charakteristischen Rohdichten der beiden durch die Verbindungseinheit	
		verbundenen Bauteile)	
	ı ≤ 3h _e		
	₂ ≤ 5h _e	$R_{c,0,k} = k_t \cdot R_{c,0,k}$	
	dicken mit	(, , ,)	[262]
	≤ 2,25h _e	$k_t = min\left\{1; \frac{t}{3h}; \frac{t}{5h}\right\}$	[262]
t₂ ≤ 3,75h _e s	sind unzulässig!)	$\left(3h_c \cdot 5h_c \right)$	
		-Holzarten (Vollholz, Brettschichtholz, Balkenschichtholz oder	
		Furnierschichtholz ohne Querlagen	
		-Winkel zwischen Kraft- und Faserrichtung des Holzes = 0°	
		-Endabstand a _{1,t} des Dübels vom belasteten Holzende in	
Varausaataus	ann für D. nach Cl	Faserrichtung beträgt mindestens 2dc	
	gen für R _{c,k} nach Gl. (257) :	-Randabstand a _{2,t(c)} des Dübels vom Holzrand senkrecht zur Faser beträgt mindestens 0,6dc	Absatz (
	(201).	-Dicke des Seitenholzes t ₁ ≥ 3h _e	1.05002
		-Dicke des Mittelholzes t ₂ ≥ 5h _e (zwei- bzw. mehrschnittige	
		Verbindungen)	
0		-charakteristische Rohdichte beträgt mindestens ρ _k =350kg/m ³	
Symbole	Bezeichnung		
R _{c,k}	charakteristischer Wert der Tragfähigkeit in [N]		
d _c ρ _k	Dübeldurchmesser in [mm] charakteristischer Wert der Rohdichte		
	Endabstand des Dübels vom belastetem Hirnholzende		

Furnierschichtholz (ohne Querlagen) verwendet werden. Da diese Dübel in das Holz eingelassen und nicht wie Scheibendübel mit Zähnen eingepresst werden, können mit ihnen auch Vollholzbauteile aus dem weitaus härteren Laubholz verbunden werden.

Der Charakteristische Wert der Tragfähigkeit von Ring- und Scheibendübeln ist im wesentlichen von der Holzart (Rohdichte), dem Dübeldurchmesser und der Einlasstiefe abhängig. Zur Entfaltung der vollen Tragfähigkeit sind bestimmte geometrische Voraussetzungen (Mindestabstände, Mindestholzdicken, Holzrohdichten) erforderlich, die unbedingt einzuhalten sind. Bei Nichteinhaltung der Mindestholzdicken vermindert sich die Tragfähigkeit. Hierbei sind die minimalen Grenzwerte der Mindestholzdicken zu beachten, die in keinem Fall unterschritten werden dürfen. Eine höhere Rohdichte als 350 Kg/m³ führt zur Erhöhung der Tragfähigkeit.

Tabelle 10 fasst die Formeln zur Berechnung der charakteristischen Tragfähigkeit R_{c,k} für eine Verbindungseinheit und die hierfür geltenden konstruktiven Voraussetzungen zusammen.

Ist der Last- Faserwinkel α > 0°, dann ist der Wert von $R_{c,k}$ mit k_{α} zu multiplizieren. Es gilt GI. (258) mit GI. (259) und d_c in mm:

$$R_{c,\alpha,k} = k_{\alpha} \cdot R_{c,0,k}$$
; $k_{\alpha} = \frac{1}{(1,3+0,001 \cdot d_{c}) \cdot \sin^{2} \alpha + \cos^{2} \alpha}$

Der Bemessungswert der Tragfähigkeit ergibt sich aus der bekannten Gleichung unter Berücksichtigung des Modifikationsfaktors für die zu verbindende Holzart und den geltenden Materialfaktor γ_{M} .

Ab zwei Dübel in einer Reihe hintereinander angeordnet ist die Anzahl in ihrer Wirkung auf die Tragfähigkeit zu begrenzen. Mehr als 10 Dübel hintereinander in einer Reihe dürfen nicht in Rechnung gestellt werden (s. Tabelle 11). Diese Festlegung entspricht den Regeln der alten Norm.

Tabelle 11: Berechnung der Bemessungswerte der Tragfähigkeit R_{j,0,(α),d} für Ring- und Scheibendübel ohne Zähne für eine Verbindungseinheit nach DIN 1052, Abschnitt 13.3.2

 R_d

$$R_{c,0,(\alpha),d} = \frac{k_{mod} \cdot R_{c,0,(\alpha),k}}{\gamma_M}$$
 (pro Verbindungseinheit)

mit: k_{mod} =Modifikationsbeiwert für Vollholz, Brettschichtholz Balkenschichtholz, Furnierschichtholz (ohne Querlage); y_{M} = 1,3

mehrere Verbindungseinheiten

$$R_{c,0,(\alpha),d} = n \cdot \frac{k_{mod} \cdot R_{c,0,(\alpha),k}}{\gamma_M}$$

mit: n = Anzahl der Verbindungseinheiten

wirksame Anzahl mehrerer hintereinander angeordneter Verbindungseinheiten

Beachte:

für 2 < n ≤ 10 ist n_{ef} < n

Verbindungsmittel mit n > 10 dürfen nicht in Rechnung gestellt werden!
$$R_{j,d} = n_{ef} \cdot R_{c,0,(\alpha),d}$$
 mit:
$$n_{ef} = \left[2 + \left(1 - \frac{n}{20}\right) \cdot n - 2\right] \cdot \frac{90 - \alpha}{90} + n \cdot \frac{\alpha}{90}$$

Verbindungen mit Scheibendübeln mit Zähnen:

Scheibendübel mit Zähnen werden in das Holz eingepresst. Sie bestehen entweder aus kaltgeformten und gehärteten Stahl oder aus Temperguss. Hinsichtlich der möglichen Holzbaustoffe gelten die gleichen Regeln wie bei Ring- und Scheibendübeln. Für die Verbindung von Laubhölzern sind sie allerdings nicht geeignet. Bei der Kraftübertragung entstehen bei diesen Dübeln wegen des geringeren Biegewiderstandes der Zähne höhere Verformungen, als bei Ring- und Scheibendübeln.

Die charakteristische Tragfähigkeit von Scheibendübeln mit Zähnen ist abhängig von der Holzart (Rohdichte), dem Dübeldurchmesser und zusätzlich von der mittragenden Wirkung der jeweiligen Bolzen (s. Tabelle 12). Auch bei diesen Dübeln gelten eine ganze Reihe von geometrischen Voraussetzungen, die einzuhalten sind (s. Tabelle 12). Eine höhere Rohdichte als 350 Kg/m³ führt zur Erhöhung der Tragfähigkeit. Geringere Mindestholzdicken als vorgegeben sind auch hier bis zu einem nicht mehr unterschreitbaren Wert zulässig. Die Nutzung dieser Möglichkeit führt aber zur Verminderung der Tragfähigkeit (s. Tabelle 12).

	r charakteristischen Tragfähigkeit R _{i,o,k} von Scheibendübe gseinheit nach DIN 1052, Abschnitt 13.3.3	In mit
Bedingung	R _k	
	$R_{j,0,k} = R_{c,k} + R_{b,0,k}$ mit $R_{c,k} = \begin{cases} 18 \cdot d_c^{1.5} & \text{(Dübeltyp C1 - C5)} \\ 25 \cdot d_c^{1.5} & \text{(Dübeltyp C10 und C11)} \end{cases}$	[266] [267]
Winkel zwischen Kraft- und Faserrichtung α = 0°	$R_{b,0,k}$ = charakteristische Tragfähigkeit des Bolzens für α = 0° n. Abschnitt 12.4	
	$R_{b,0,k} = \sqrt{\frac{2 \cdot \beta}{1 + \beta}} \cdot \sqrt{2 \cdot M_{y,k} \cdot f_{h,1,k} \cdot d}$	[191]
	$d = \sqrt{a_1 \cdot a_2}$ (Dübeltyp C3 und C4)	[268]
	$d = d_c$ (Dübeltyp C5)	[]
wenn α ≤ 30° und $a_{1,t} < 1,5•d_c$ Dü.C1,C2,C5 $a_{1,t} < 1,5•a_2$ Dü. C3, C4 $a_{1,t} < 2,0•d_c$ Dü. C10, C11	$R_{c,k} = \begin{cases} 18 \cdot d_c^{1.5} \cdot \frac{a_{1,i}}{1.5} \cdot d_c^{1.5} \cdot \frac{a_{1,i}}{1.5} \cdot d_c^{1.5} \cdot \frac{a_{1,i}}{1.5} \cdot a_2 \\ 25 \cdot d_c^{1.5} \cdot \frac{a_{1,i}}{2.0} \cdot d_c \end{cases}$	Absatz (9)
wenn Rohdichte	$R_{c,k} = k_{\rho} \cdot R_{c,k} \text{ mit } k_{\rho} = \frac{\rho_k}{350}$	

	o _k ≤ 500kg/m³ g/m³ nicht ssig!		[271]
2,25 h _e und 3,75 h _e (t ₁ < 2,25h 3,75h_e s	enn $\leq t_1 < 3h_e$ /oder $\leq t_2 < 5h_e$ h_e bzw. $t_2 < 0$ ind nicht ssig!)	$R_{c,k} = \begin{cases} k_t \cdot 18 \cdot d_c^{1.5} \\ k_t \cdot 25 \cdot d_c^{1.5} \end{cases} $ mit $k_t = min \left\{ 1; \frac{t_1}{3h_e}; \frac{t_2}{5h_e} \right\}$	Absatz (10)
Voraussetzung	jen für R _{c,k} nach 267) :	-Holzarten (Vollholz, Brettschichtholz, Balkenschichtholz oder Furnierschichtholz ohne Querlagen -Winkel zwischen Kraft- und Faserrichtung des Holzes = 0° -Endabstand $a_{1,t}$ des Dübels vom belasteten Holzende in Faserrichtung: $a_{1,t} \geq 1,5d_c \text{ (Dübel C1, C2, C5)} \\ a_{1,t} \geq 1,5a_2 \text{ (Dübel C3, C4)} \\ a_{1,t} \geq 2,0d_c \text{ (Dübel C10, C11)} \\ \text{-Randabstand } a_{2,t(c)} \text{ des Dübels vom Holzrand senkrecht zur Faser:} \\ a_{2,t(c)} \geq 0,6d_c \text{ (Dübel C1, C2, C5,C10,C11)} \\ a_{2,t(c)} \geq 0,6a_2 \text{ (Dübel C3, C4)} \\ \text{-Dicke des Seitenholzes } t_1 \geq 3h_e \\ \text{-Dicke des Mittelholzes } t_2 \geq 5h_e \text{ (zwei- bzw. mehrschnittige Verbindungen)} \\ \text{-charakteristische Rohdichte beträgt mindestens } \rho_k = 350kg/m^3$	Absatz (1)
Symbole	Bezeichnung		
$R_{j,0,k}$	charakteristischer Wert der Tragfähigkeit in [N]		
d _c	Dübeldurchmesser (Dübeltyp C1,C2,C5,C10,C11) in [mm]		
a ₂	größte Seitenlänge (Dübel C3 und C4)		
h _e	Einlasstiefe der Dübel ins Holz nach Tabellen G16 – G22		

Der Bemessungswert der Tragfähigkeit ergibt sich aus der Addition des Bemessungswertes der Tagfähigkeit für den Dübel und des Bolzens, da die Bolzen eine mittragende Wirkung entfalten (s. Tabelle 12).

Für die Begrenzung der Tragfähigkeit bei mehreren hintereinander angeordneten Dübeln gelten die gleichen Grundsätze, wie bei Ring- und Scheibendübeln ohne Zähne (s. auch Tabelle 13).

Tabelle 13: Berechnung der Bemessungswerte	e der Tragfähigkeit Rind von Ring- und			
Scheibendübeln mit Zähnen nach DIN 1052, Abschnitt 13.3.3				
F	R_d			
$\alpha = 0^{\circ}$	α > 0°			
$R_{j,0,d} = R_{c,d} + R_{b,0,d}$	$R_{j,\alpha,d} = R_{c,d} + R_{b,\alpha,d}$			
mit	mit			
$R_{c,d} = \frac{k_{mod} \cdot R_{c,k}}{\gamma_M} \text{ bzw. } R_{b,0,d} = \frac{k_{mod} \cdot R_{b,0,k}}{\gamma_M}$ $R_{b,0,d} = \frac{k_{mod} \cdot R_{b,0,k}}{\gamma_M}$	$R_{c,d} = \frac{k_{mod} \cdot R_{c,k}}{ \nearrow \!\!\!\!/ N_M} \text{ bzw. } R_{b,\alpha,d} = \frac{k_{mod} \cdot R_{b,\alpha,k}}{ \nearrow \!\!\!\!/ N_M}$			
Beachte: $\gamma_M = 1.3$ für Holz und $\gamma_M = 1.1$ für Stahl!	Beachte: $\gamma_M = 1.3$ für Holz und $\gamma_M = 1.1$ für Stahl!			
mehrere Verbindungseinheiten hintereinander in Kraftrichtung				
Bea	chte:			
für 2 < n ≤ ′	10 ist n _{ef} < n			
alle Verbindungsmittel n > 10 dürfer	n nicht in Rechnung gestellt werden!			
$R_{j,d} = n_{ef}$	$R_{j,0,(lpha),d}$			
$n_{ef} = \left[2 + \left(1 - \frac{n}{20}\right)\right]$	$\cdot \left[\cdot n - 2 \right] \cdot \frac{90 - \alpha}{90} + n \cdot \frac{\alpha}{90}$			

Hirnholzdübel- Verbindungen mit Dübeln besonderer Bauart:

Mit Ringdübeln (Typ A1- $d_c \le 126$ mm) und Scheibendübeln mit Zähnen (Typ C1, $d_c < 140$ mm; Typ C10 ohne Durchmesserbegrenzung) können rechtwinklige oder schräge Anschlüsse ($\phi \ge 45^\circ$) in Hirnholzflächen von Vollholz, Brettschichtholz oder Balkenschichtholz hergestellt werden. Bei Verwendung von Vollholz darf die mittlere Holzfeuchte nicht mehr als 20% betragen. Passend zu jedem Dübel sind die entsprechenden Bolzen zu verwenden.

Die Charakteristische Tragfähigkeit einer Verbindungseinheit berechnet sich nach den in Tabelle 14 zusammengefassten Formeln. Sie ist abhängig von der Dübelanzahl, dem Dübeltyp und dem Dübeldurchmesser.

Tabelle 14: Berechnung der charakteristischen Tragfähigkeit R _{c,H,k} von Hirnholzdübelverbindungen besonderer Bauart für eine Verbindungseinheit nach DIN 1052, Abschnitt 13.3.4			
		≥120 mm S Dübel-Typ nach 13.3.4(1) Rundstahl Ø24-40 mm E P P P P P P P P P P P P	
Bedin	igung	R _k	GL
		$R_{c,H,k} = \frac{k_H}{(1,3+0,001 \cdot d_c)} \cdot R_{c,0,k}$	[273]
Anschlus 45° < q		mit $R_{c,0,k} = min \left\{ 35 \cdot d_c^{1,5}; 31, 5 \cdot d_c \cdot h_e \right\}$	[267]
		$k_{H} = 0.65$ (bei einem oder zwei Dübel)	
		$k_{H}=0.80$ (bei drei, vier oder fünf Dübel)	
Rohd ρ _k < 35		Verbindung unzulässig!	Absatz (6)
Rohd ρ _k > 35	0kg/m³	Vergrößerung von R _{c,H,k} mit Faktor k _ρ nicht zulässig!	Absatz (6)
Rohd 350kg/m³ ≤ ρ ur Dübel C1	_{lk} ≤ 500kg/m³ n d	$R_{c,H,k} = 14 \cdot d_c^{1.5} + 0.8 \cdot R_{b,90,k}$	[274]
Voraussetzungen		-Holzarten: Vollholz. Brettschichtholz, Balkenschichtholz -Dübel: A1 (d _c ≤ 128mm) C1 (d _c ≤ 140mm) C10 Mindestbreite des Bauteils beachten! -Lagesicherung nach Abschnitt 13.3.4 (2) -Holzfeuchte bei Vollholz < 20%	Absatz (1)
Symbole	Bezeichnur		
R _{c,0,k}		tischer Wert der Tragfähigkeit einer Verbindungseinheit n. Gl. [267] in N	T-#
k _H			ıragers
R _{b,90,k} d _c		tischer wert der Tragfanigkeit des Bolzens für a = 90 nmesser in [mm]	
ЧC	Dabeldalci	anecoor ar paint	····

Der Bemessungswert der Tragfähigkeit ergibt sich nach den Regeln der Tabelle 15. Die konstruktiven Bedingungen sind entsprechend den Regeln der DIN 1052:2004 einzuhalten.

Tabelle 15: Berechnung des Bemessungswertes der Tragfähigkeit R _{c,H,d} von	GI.
Hirnholzdübelverbindungen besonderer Bauart n. DIN 1052, A. 13.3.4	
$R_{c,H,d}=n_c rac{k_{mod} \cdot R_{c,H,k}}{\gamma_M}$ mit $n_c=A$ nzahl der Verbindungsmitteleinheiten in einem Anschluss, mit $n_c \leq 5!$ und $\gamma_M=1,3$	[275]

9. Weitere neue Regeln für Holzbauverbindungen

Auf dem Gebiet der Verbindungen gibt es für die Holzbaupraxis interessante neue Regelungen über Schraubenpressklebung, Verbindungen mit eingeklebten Stahlstäben, Verbundbauteile aus Brettschichtholz und Verbindungen mit Holznägeln (siehe auch [2] bis [5]).

Literatur:

- [1] Colling u. a.: EC 5- Holzbauwerke, Bemessungsgrundlagen und Beispiele. Informationsdienst Holz, Holzbau- Handbuch, Reihe 2, Teil1, Folge 1 Arge Holz, Düsseldorf 1995
- [2] Lißner, Felkel, Hemmer, Radovic, Rug, Steinmetz: DIN 1052 Praxishandbuch Holzbau (BDZ., Hrsg), Beuth- und WEKA- Verlag, Berlin/Augsburg 2005
- [3] Rug. W; Mönck, W.: Holzbau; 15. Auflage, Verlag Bauwesen, Berlin 2006; (www.holzbau-statik.de)
- [4] Werner, G; Zimmer, K.: Holzbau Teil 1 und 2; 3. Auflage, neubearbeitet von Zimmer, K. und Lißner, K. ,Springer Verlag Berlin, Heidelberg 2004/2005
- [5] Blaß, Ehlbeck, Kreuzinger, Steck: Erläuterungen zu DIN 1052:2004-08, DGfH, München 2004
- [6] Johansen, K. W.: Theory of timber connections. International Association of Bridge and Structural Engineering, Publication No. 9: 249-262, Bern 1949